| Arizona's FINAL 2004 303(d) List and Other Impaired Waters At Least One Designated Use Assessed as "Impaired" | | | Surface Water
Stream Reach or Lake Number | Pollutants or Parameters of Concern | | | |---|--------------------|---|--|--|---|---| | Pollutants or Parameters of Concern | | | | 303(d) List
TMDL required | TMDL completed or not required 4a = TMDLs complete but water quality remains impaired 4b = no TMDL required, water is impaired be expected to attain standards by next list | | | Surface Water | | 303(d) List | TMDL completed or not required 4a = TMDLs complete but water quality remains impaired | Little Colorado River
Porter Tank Draw - McDonalds Wash
AZ15020008-017 | Copper, silver, suspended sediment concentration | | | Stream Reach or Lake | | TMDL required | 4b = no TMDL required, water is impaired but expected to attain standards by next list | Long Lake
AZL15020008-0820 | Mercury in fish tissue | | | Alamo Lake | <u>u</u> | Mercury in fish tissue, pH (high), ammonia | | Lyman Lake
AZL15020001-0850 | Mercury in fish tissue | | | ZL15030204-0040
Coors Lake | | | | Nutrioso Creek | | 48 | | ZL15030204-5000 | | Mercury in fish tissue | | headwaters - Picnic Creek AZ15020001-017 Nutrioso Creek | | Turbidity/suspended sediment concentration | | soulder Creek
Innamed tributary - Wilder C
XZ15030202-006B | Creek | Mercury | | Picnic Creek - Little Colorado River
AZ15020001-015 | | 4a Turbidity/suspended sediment concentration | | VIIIGOT OTOOK - | reek – Butte Creek | Mercury | 4a
Arsenic, copper, zinc | Rainbow Lake
AZL15020005-1170 | | 4a
Nutrients and pH | | Copper Creek
IZ15030202-
IO5A Butte Cre
Creek | eek - Copper | | 4a
Arsenic | Soldiers Lake
AZL15020008-1440 | Mercury in fish tissue | | | Burro Creek
Boulder Creek - Black Canyo | on | Mercury | | Soldiers Annex Lake
AZL15020008-1430 | Mercury in fish tissue | | | Z15030202-004
Colorado – Grand Cany | von Watershed | | | Middle Gila Watershed | | | | Colorado River
Parashant Canyon - Diamon | | Selenium, suspended sediment concentration | | Alvord Park Lake
AZL15060106B-0050 | Ammonia | | | XZ15010002-003
Paria River
Utah border - Colorado Rive | er | Suspended sediment concentration | | Cash Mine Creek
headwaters - Hassayampa River
AZ15070103-349 | | 4a
Copper, zinc | | Z14070007-123
firgin River | | Selenium, suspended sediment | | Cash Mine Creek (unnamed tributary to)
headwaters - Cash Mine Creek | | 4a
Cadmium, copper, zinc | | eaver Dam Wash - Big Bend Wash Z15010010-003 olorado - Lower Gila Watershed | | | AZ15070103-415 Chaparral Lake | Dissolved oxygen, Escherichia coli | | | | Colorado River | Watershed | | | AZL15060106B-0300 Cortez Park Lake | | | | loover Dam - Lake Mohave
Z15030101-015 | | Selenium | | AZL15060108B-0410 | Dissolved oxygen, pH (high) | | | Gila River
Coyote Wash - Fortuna Was
AZ15070201-003 | sh | Boron, selenium | | headwaters - Hassayampa River
AZ15070103-239 | Copper, zinc, cadmium | | | Painted Rock Borrow Pit Lak
AZL15070201-1010 | ke | DDT metabolites, toxaphene and chlordane in fish tissue, dissolved oxygen | | Gila River
Salt River - Agua Fria River
AZ15070101-015 | DDT metabolites, toxaphene and chlordane in fish tissue | | | ittle Colorado – San J | uan Watershed | | | Gila River
Agua Fria River - Waterman Wash | DDT metabolites, toxaphene and | | | Bear Canyon Lake
AZL15020008-0130 | | pH | | AZ15070101-014
Gila River | chlordane in fish tissue | | | ake Mary (lower)
AZL15020015-0890 | | Mercury in fish tissue | | Waterman Wash - Hassayampa River
AZ15070101-010 | DDT metabolites, toxaphene and
chlordane in fish tissue | | | ake Mary (upper)
AZL15020015-0900 | | Mercury in fish tissue | | Gila River
Hassayampa River - Centennial Wash
AZ15070101-009 | DDT metabolites, toxaphene and chlordane in fish tissue | | | ittle Colorado River
Vest Fork of the Little Color
Canyon Creek | ado River - Water | | 4a Turbidity/suspended sediment concentration | Gila River
Centennial Wash - Gillespie Dam
AZ15070101-008 | DDT metabolites, toxaphene, and chlordane in fish tissue, boron, selenium | | | AZ15020001-011
Little Colorado River
Water Canyon Creek - Nutri | ioso Creek | | 4a | Gila River
Gillespie Dam - Rainbow Wash
AZ15070101-007 | DDT metabolites, toxaphene and chlordane in fish tissue | | | AZ15020001-010
Little Colorado River
Nutrioso Creek - Camero W | | | Turbidity/suspended sediment concentration 4a | Gila River Rainbow Wash - Sand Tank AZ15070101-005 | DDT metabolites, toxaphene and chlordane in fish tissue | | | AZ15020001-009
Little Colorado River | | | Turbidity/suspended sediment concentration | Gila River Sand Tank - Painted Rocks Reservoir | DDT metabolites, toxaphene and | | | unnamed reach (15020001-
ake
AZ15020001-005 | -021) to Lyman | | 4a
Turbidity/suspended sediment concentration | AZ15070101-001 Hassayampa River headwaters - Copper Creek | chlordane in fish tissue | 4a | | Little Colorado River
Silver Creek - Carr Wash | | Escherichia coli, sediment | | AZ15070103-007A | | Cadmium, copper, zinc, and pH | | AZ15020002-004 | | Loonenena con, seulitett | | Hassayampa River Buckeye Canal - Gila River AZ15070103-001B | DDT metabolites, toxaphene and chlordane in fish tissue | | | | Pollutants or Parameters of Concern | | | Pollutants or Parameters of Concern | | |--|---|--|---|---|---| | Surface Water
Stream Reach or Lake Number | 303(d) List
TMDL required | TMDL completed or not required 4a = TMDLs complete but water quality remains impaired 4b = no TMDL required, water is impaired but expected to attain standards by next list | Surface Water
Stream Reach or Lake Number | 303(d) List
TMDL required | TMDL completed or not required 4a = TMDLs complete but water quality remains impaired 4b = no TMDL required, water is impaired to expected to attain standards by next list | | Mineral Creek
Devils Canyon - Gila River
AZ15050100-012B | Copper, selenium | | San Pedro River
Babocomari Creek - Dragoon Wash
AZ15050202-003 | Escherichia coli | | | ainted Rocks Reservoir
ZL15070101-1020A | DDT metabolites, toxaphene and chlordane in fish tissue | | San Pedro River
Dragoon Wash - Tres Alamos Wash
AZ15050202-002 | Nitrate | | | Queen Creek
eadwaters - Superior Mine WWTP
Z15050100-014A | Copper | | San Pedro River
Aravaipa Creek - Gila River
AZ15050203-001 | Escherichia coli, selenium | | | Queen Creek
Superior Mine WWTP - Potts Canyon | Copper | | Santa Cruz - Rio Magdalena - Rio Sonoyta Watershed | | | | Z15050100-014B | ooppo. | | Alum Gulch | | 4a | | Salt River
13 rd Ave WWTP - Gila River
1Z15060106B-001D | DDT metabolites, toxaphene and chlordane in fish tissue | | headwaters - 31°28'20"/110°43'51"
AZ15050301-561A
Alum Gulch | | Cadmium, copper, pH (low), zinc | | urkey Creek
nnamed tributary at 34°19'28"/112°2128 -
Poland Creek | Cadmium, copper, zinc, lead | | 31°28'20"/110°43'51" - 31°29'17"/110°44'25"
AZ15050301-561B
Arivaca Lake | | 4a
Cadmium, copper, pH (low), zinc | | X15070102-036B | | | AZL15050304-0080 | | Mercury in fish tissue | | Salt River Watershed | | | Cox Gulch | | 4a | | Canyon Lake
AZL15060106A-0250 | Dissolved oxygen | | headwaters - 3R Canyon
AZ15050301-560
Cox Gulch, (unnamed tributary of) | | Cadmium, copper, zinc, and pH (low) | | Christopher Creek
neadwaters - Tonto Creek
AZ15060105-353 | | 4a
Escherichia coli | headwaters - Cox Gulch
AZ15050301-877 | | 4a
Cadmium, copper, zinc, and pH (low) | | Crescent Lake
AZL15060101-0420 | pH (high) | | Harshaw Creek
headwaters - Sonoita Creek
AZ15050301-025 | | 4a
Copper and pH (low) | | Sibson Mine tributary
leadwaters - Pinto Creek
kZ15060103-887 | | 4a
Copper | Harshaw Creek, (unnamed tributary of)
(Endless Chain Mine tributary)
headwaters - Harshaw Creek
AZ15050301-888 | | 4a
Copper and pH (low) | | Pinto Creek
neadwaters - tributary at 33°19'27"/110°54'56"
AZ15060103-018A | | 4a
Copper | Humbolt Canyon
headwaters - Alum Gulch
AZ15050301-340 | | 4a
Cadmium, copper, zinc, and pH (low) | | Pinto Creek
ributary at 33°19'27"/110°54'56" - Ripper
Spring | | 4a
Copper | Lakeside Lake
AZL15050302-0760 | Dissolved oxygen ammonia nitrogen, phosphorus, chorophyll | | | AZ15060103-018B
Pinto Creek
Ripper Spring - Roosevelt Lake | Selenium, copper | | Nogales and East Nogales washes
Mexico border - Potrero Creek
AZ15050301-011 | Chlorine, Escherichia coli, ammonia, copper | | | AZ15060103-018C
Salt River
Stewart Mountain Dam - Verde River | Dissolved oxygen, copper | | Parker Canyon Lake
AZL15050301-1040 | Mercury in fish tissue | | | AZ15060106A-003 Fonto Creek neadwaters - unnamed trib at 34*18'10" / 111* | | 49 | Pena Blanca Lake
AZL15050301-1070 | | ,ta
 Mercury in fish tissue | | 04'14"
AZ15060105-013A | Dissolved oxygen, nitrogen | Escherichia coli | Rose Canyon Lake
AZL15050302-1260
Santa Cruz River | рН | | | Fonto Creek
unnamed trib at 34°18′10″ / 111″ 04′14″ -
Haigler Creek | Nitrogen | 4a
Escherichia coli | Mexico border - Nogales WWTP AZ15050301-010 Sonoita Creek | Escherichia coli | | | AZ15060105-0138 San Pedro – Willcox Playa – Rio Yaqui Watershed | | 750 feet below WWTP - Santa Cruz River
AZ15050301-013C | Zinc | 4b
Dissolved oxygen | | | Brewery Gulch
neadwaters - Mule Gulch
NZ15080301-337 | Copper | | Three R Canyon
headwaters - 31°28'35"/110°46'19"
AZ15050301-558A | | 4a
Cadmium, copper, zinc, and pH (low) | | Mule Gulch
neadwaters - above Lavender Pit
NZ15080301-090A | Copper | | Three R Canyon
31°28'35"/110°46'19"-31°28'27"/110°47'12"
AZ15050301-558B | | 4a
Cadmium, copper, zinc, and pH (low) | | Mule Gulch
above Lavender Pit - Bisbee WWTP
AZ15080301-090B | Copper, pH (low) | | Three R Canyon
31°28'27"/110°47'12" - Sonoita Creek
AZ15050301-558C | | 4a
Copper and pH (low) | | Mule Gulch
Bisbee WWYTP - Highway 80 Bridge
AZ15080301-090C | Copper, zinc, pH (low), cadmium | | Three R Canyon, (unnamed tributary of)
headwaters - Three R Canyon
AZ15050301-889 | | 4a
Cadmium, copper, zinc, and pH (low) | | San Pedro River Alexico border - Charleston Copper UZ15050202-008 | | Upper Gila Watershed | | | | | | Pollutants or Parameters of Concern | | | | |---|-------------------------------------|--|--|--| | Surface Water
Stream Reach or Lake Number | 303(d) List
TMDL required | TMDL completed or not required 4a = TMDLs complete but water quality remains impaired 4b = no TMDL required, water is impaired b expected to attain standards by next list | | | | Cave Creek
headwaters - South Fork of Cave Creek
AZ15040006-852A | Selenium | | | | | Gila River
Skully Creek - San Francisco River
AZ15040002-001 | Selenium | | | | | Gila River
Bonita Creek - Yuma Wash
AZ15040005-022 | Escherichia coli, sediment | | | | | Luna Lake
AZL15040004-0840 | | 4a Dissolved oxygen, pH (high), and a fish kill ir 1999 (addressed through nutrient TMDL) | | | | San Francisco River
headwaters - New Mexico border
AZ15040004-023 | Sediment | | | | | Verde River Watershed | | | | | | East Verde River
Ellison Creek - American Gulch
AZ15060203-022B | Selenium | | | | | Grande Wash
headwaters - Ashbrook Wash
AZ15060203-991 | | 4b
Escherichia coli | | | | Granite Creek
headwaters - Willow Creek "
AZ15060202-059A | Dissolved oxygen | | | | | Oak Creek
At Slide Rock State Park
AZ15060202-018B | | 4a
Escherichia coli | | | | Pecks Lake
AZL15060202-1060 | | 4a Dissolved oxygen (addressed through nutrient TMDL) | | | | Stoneman Lake
AZL15060202-1490 | | 4a pH (high) (addressed through nutrient TMDL) | | | | Verde River Oak Creek - Beaver Creek AZ15060202-015 | | 4a
Turbidity/suspended sediment concentration | | | | Verde River
Beaver Creek - HUC boundary 15060203
AZ15060202-001 | | 4a
Turbidity/suspended sediment concentration | | | | Verde River
West Clear Creek - Fossil Creek
AZ15060203-025 | | 4a
Turbidity/suspended sediment concentration | | | | Verde River
Bartlett Dam - Camp Creek
AZ15060203-004 | Selenium, copper | | | | | Watson Lake
AZL15060202-1590 | Nitrogen, dissolved oxygen, pH | | | | | Whitehorse Lake
AZL15060202-1630 | Dissolved oxygen | | | | Memo to file by Peter Kozelka, EPA Region 9 Water Division for ADEQ 2004 303(d) list submittal Date: Nov. 10, 2004 Topic: Evaluation of SSC & Turbidity data from ADEQ and assessment procedures for bottom deposits narrative At my request, ADEQ provided available monitoring data for evaluating suspended sediment concentrations (SSC) and turbidity to facilitate assessments of stream and lake condition based on narrative standard for bottom deposits. ADEQ had paired data for SSC and turbidity from three rivers with Aquatic and Wildlife warmwater (A&Wwarm) designated beneficial use, Verde, Salt and Upper Gila. I plotted turbidity vs SSC and evaluated the correlation via several ways. By using log-log transformations of the raw data, a procedure consistent with other sediment researchers, the correlation showed a good fit ($r^2 = 0.848$). The best fit line was equation was y = 0.7414x + 0.8618 and was not forced through zero, again consistent with other researchers (Lewis, 2002). I used this equation to convert the existing numeric SSC standard of 80 mg/L to a corresponding turbidity value of 25 NTU. ADEQ's has two existing standards for assessing water quality conditions—the SSC numeric and the bottom deposits narrative. In 2002, ADEQ introduced the SSC numeric std. and they concurrently repealed the numeric turbidity standard(s). Whereas the turbidity std. criteria applied without consideration of stream flow rates, the SSC std. applies only during "baseflow" conditions (no further interpretation of baseflow exists in the standard). For the 2004 listing assessment, ADEQ had minimal SSC monitoring data for stream and rivers in Arizona. Staff did complete SSC assessments for approximately 10 rivers and concluded that three were impaired due to exceedences of this numeric standard. ADEQ did evaluate available turbidity data but concluded each water body was inconclusive, based on the fact that turbidity std. no longer applied. ADEQ did not make any assessments based on bottom deposits because state statute precludes them from using narrative standards until implementation has been completed. As of this date, ADEQ has not finalized nor adopted any narrative standard implementation measures. EPA determined it appropriate to interpret the narrative bottom deposits standard by utilizing the correlation between SSC and turbidity described above. Thus turbidity was a surrogate for evaluating suspended sediment levels and associated bottom deposits. I increased the turbidity value above by a factor of two to accommodate some uncertainty in the correlation; this yielded a turbidity guideline of 50 NTU to perform assessments of warm water streams/rivers. This value is consistent with EPA's Gold Book (1986 and references therein) turbidity criteria as well as ADEQ's previously existing numeric turbidity standard for such waterbodies. ADEQ did not have paired SSC and turbidity data for coldwater streams. However, other researchers have demonstrated this correlation does apply to coldwater streams in other states (Lewis, 2002). So I utilized ADEQ's previous turbidity standard of 10 NTU to perform assessments of coldwater streams. Again ADEQ did not have any paired data for turbidity and SSC for lakes. I recognize there may be additional uncertainty so I adjusted the State's previous numeric turbidity criteria three fold and utilized 30 for coldwater and 75 NTU to perform assessments of other lakes. For 24 waterbodies, I performed a case-by-case analysis of available monitoring data and other information. I considered the following information: - a. dates associated with turbidity data? - b. sample sizes exist for each waterbody? - c. frequency of exceedences above EPA turbidity guideline values? - d. magnitude(s) of excursions above the turbidity guideline values? - e. Median exceedences value in comparison to the turbidity guideline value. - f. If stream flow records were available, did any turbidity exceedences occur during lower flows as well as high flows? - If any SSC data were available, were there any excursions of that numeric value? - h. Any other sediment information available? Such as % fines (<0.062 mm) in the suspended sediment matter. - Was the waterbody segment adjacent to another segment that had been deemed impaired or where TMDL had been completed? - Had any major land use changes occurred recently in the watershed for each waterbody? Any information pertaining to federally protected species (threatened and endangered) in the water body? | Waterbody | Criteria | Summary of results | Other info | Biological info | |---------------------------------|----------|---|--|--| | Billy Creek | 10 NTU | Results range: 4 – 28 NTU 4 of 8 exceedences (50%) magnitude of median exceedence value (15 NTU) is less than 2 fold higher than criteria maximum exceedence is 3 fold higher | Flow records show maximum exceedence occurred at higher streamflow rate. | | | Chevelon Crk | 10 NTU | Results range: 12 – 34 NTU 4 of 4 exceedences (100%) magnitude of median exceedence value (14 NTU) is less than 2 fold higher than criteria; maximum exceedences is 3 fold higher | Flow records show maximum exceedence occurred at typical streamflow rate. | | | Silver Ck | 10 NTU | Results range: 54 – 1000 NTU 8 of 8 exceedences (100%) magnitude of median exceedence value (115 NTU) is much greater than 2 fold higher than criteria; | Maximum exceedence occurred at highest streamflow rates; some mid- range exceedences at low flow rates; I of I SSC sample exceedence | Threatened & Endangered fish (spinedace and humpback chub) species present | | Mineral Creek | 50 NTU | Results range: 0.5 – 960 NTU 5 of 41 exceedences (12%) magnitude of median exceedence value (90 NTU) is nearly 2 fold higher than criteria | All exceedences associated with higher streamflow rates. This data from sites above treatment area, so treatment will not benefit this upstream portion | Threatened Apache Trout present in this reach | | Christopher | 10 NTU | Results range: 1 - 89 NTU 8 of 19 exceedences (42%) magnitude of median exceedence value (13 NTU) is less than 2 fold higher than criteria | Maximum exceedences occurred at higher streamflow rate. pre-1998 data shows 7 of 9 exceedences | | | Tonto-hdwtr | 10 NTU | Results range: 1 - 250 NTU 20 of 32 exceedences (25%) magnitude of median exceedence value (25 NTU) is more than 2 fold higher than criteria; 3 exceedences are nearly 20fold higher than criteria | 5 exceedences associated with lower streamflow rates | | | Tonto—above
Haigler Ck | 50 NTU | Results range: 2.4 – 898 NTU 6 of 22 exceedences (27%) magnitude of median exceedence value (99 NTU) is 2 fold higher than criteria | Maximum exceedences associated with lower streamflow rate | | | Nogales Wash | 50 NTU | Results range: 2 – 2730 NTU | maximum exceedences | Endangered fish (Gila | | Waterbody | Criteria | Summary of results | Other info | Biological info | | Border—Potrero | | 5 of 18 exceedences (28%) magnitude of median exceedence value (80 NTU) is less than 2 fold higher than criteria | occurred during higher streamflow rate | topminnow) species present | | Santa Cruz—
Josephine Cyn | 50 NTU | Results range: 9 – 150 NTU 4 of 19 exceedences (21%) magnitude of median exceedence value (78 NTU) is less than 2 fold higher than criteria | Effluent dependent
waterbody;
pre-1998 data shows 4 of 32
exceedences | Endangered fish (Gila
topminnow) species present | | Gila River
SF River to Eagle | 50 NTU | Results range: 10 - 701 NTU 8 of 10 exceedences (80%) magnitude of median exceedence (172 NTU) is more than 2 fold higher than criteria | 1997 data only | | | Gila River
Eagle to Bonita | 50 NTU | Results range: 12 – 413 NTU 8 of 10 exceedences (80%) magnitude of median exceedence (188 NTU) is more than 2 fold higher than criteria | 1997 data only | | | Gila River
Bonita to Yuma | 50 NTU | Results range: 0.3 - 10,000 NTU 7 of 24 exceedences (29%) magnitude of median exceedence value (420 NTU) is much higher than 2 fold higher than criteria; 3 exceedences more than 10fold higher than criteria | Some higher turbidity exceedences associated with lower streamflow rates; SSC data shows 1 annual mean and 4 event exceedences of 80 mg/L std.; 7 of 7 sediment samples show 100% fines (<.062 mm) | Threatened & Endangered plants (spikedace, loach minnow, razorback sucker) present | | SF River-
hdwtr-NM border | 10 NTU | Results range: 5 – 26 NTU 6 of 9 exceedences (67%) magnitude of median exceedence value (21 NTU) is 2 fold higher than criteria | Some higher exceedences associated with lower streamflow rates | Threatened & Endangered fish (loach minnow & razorback sucker) present | | SF River-
Blue -Limestone | 50 NTU | Results range: 2 – 999 NTU 3 of 16 exceedences (19%) magnitude of median exceedence value (291 NTU) is more than 2 fold higher than criteria; | one exceedences associated with lower streamflow rates | Threatened & Endangered fish (loach minnow & razorback sucker) present | | SF River-
Limestone - Gila | 50 NTU | Results range: 1 – 999 NTU 4 of 21 exceedences (19%) magnitude of median exceedence value (132 NTU) is more than 2 fold higher than criteria; maximum result in 2002 | Some exceedences associated with lower streamflow rates | | | Beaver—Dry to
Verde | 50 NTU | Results range: 2 – 290 NTU 5 of 21 exceedences (19%) magnitude of median exceedence value (190 NTU) is more | Only 1999 data, no newer data | | | Waterbody | Criteria | Summary of results | Other info | Biological info | |----------------------------------|--------------------|--|--|---| | | | than 2 fold higher than criteria; | | | | East Verde River—
Ellison Ck | 50 NTU | Results range: 2 – 1000 NTU 3 of 16 exceedences (19%) magnitude of median exceedence value (120 NTU) is more than 2 fold higher than criteria; | 2 exceedences occurred in
1999; both associated with
higher streamflow rates | Endangered Gila trout
present in segment
immediately upstream | | Verde –
West Ck –Fossil
Ck | 50 NTU | Results range: 0.2 – 998 NTU 6 of 17 exceedences (35%) magnitude of median exceedence value (135 NTU) is more than 2 fold higher than criteria; | Sediment TMDL approved in 2002 for segment immediately upstream | | | Verde –
Tangle – Ister Flat | 50 NTU | Results range: 0.3 – 170 NTU 4 of 24 exceedences (17%) magnitude of median exceedence value (76 NTU) is less than 2 fold higher than criteria | SSC data shows 5 of 23
sample exceedences of std.;
(geomean = 31 mg/L) | | | Ashurst Lake | 10 NTU
A&W cold | Results range: 114 – 120 NTU 4 of 4 exceedences (100%) magnitude of median exceedence value (115 NTU) is more than 3 fold higher than criteria; magnitude of all exceedences 4 to 5 fold higher than criteria | | | | Kinnicknick Lake | 10 NTU
A&W cold | Results range: 60 – 71 NTU 7 of 7 exceedences (100%) magnitude of median exceedence value (67 NTU) is more than 3 fold higher than criteria; | | | | Roosevelt Lake | 25 NTU | Results range: 2 – 79 NTU 13 of 38 exceedences (34%) magnitude of median exceedence value (36 NTU) is less than 3 fold higher than criteria; | | | | Horseshoe
Reservoir | 25 NTU | Results range: 1 – 90 NTU 4 of 18 exceedences (22%) magnitude of median exceedence value (31 NTU) is less than 3 fold higher than criteria; | | | | Whitehorse Lake | 10 NTU
A&W cold | Results range: 23 – 46 NTU 8 of 9 exceedences (89%) magnitude of median exceedence value (34 NTU) is 3 fold higher than criteria; | | |